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A one-parameter family of piecewise-linear discontinuous maps, which 
bifurcates from a periodic state of period m, (m = 2, 3,...) to an intermittent 
chaos, is studied as a new model for the onset of turbulence via intermittency. 
The onset of chaos of this model is due to the excitation of an infinite number of 
unstable periodic orbits and hence differs from Pomeau-Manneville's 
mechanism, which is a collapse of a pair of stable and unstable periodic orbits. 
The invariant density, the time-correlation function, and the power spectrum are 
analytically calculated for an infinite sequence of values of the bifurcation 
parameter fl which accumulate to the onset point tic from the chaos side 
g ~ f l - f l c  > 0. The power spectrum near e = 0 is found to consist of a large 
number of Lorentzian lines with two dominant peaks. The highest peak lies 
around frequency co = 2n/m with the power-law envelope 1/1~o- (21r/m)[ 4. The 
second-highest peak lies around co = 0 with the envelope I/Io912. The width of 
each line decreases as e, and the separation Ao9 between lines decreases as 
e/In e -1. It is also shown that the Liapunov exponent takes the form 2 ~- e/m 
and the mean lifetime of the periodic state in the intermittent chaos is given by 
me-I(ln e 1 + 1). 

KEY WORDS: Burst; ordered motion; turbulence; ergodicity; Perron- 
Frobenius operator; eigenfunction expansion. 

1. INTRODUCTION 

O n e - d i m e n s i o n a l  m a p s  p r o v i d e  us w i t h  usefu l  m o d e l s  for  the  onse t  a n d  the  

g r o w t h  o f  t u r b u l e n c e .  " )  F o r  e x a m p l e ,  the  q u a d r a t i c  m a p  gives  a m o d e l  for  a 

s y s t e m  w h i c h  exh ib i t s  p e r i o d - d o u b l i n g  t r a n s i t i o n s  (2-4) l ead ing  to the  o n s e t  o f  

t u r b u l e n c e  a n d  b a n d - s p l i t t i n g  t r a n s i t i o n s  in t he  t u r b u l e n t  reg ime.  ~  In  fact ,  

the  p e r i o d - d o u b l i n g  t r a n s i t i o n s  were  o b s e r v e d  in e x p e r i m e n t s  o n  the  B + n a r d  
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convection. (5~ One-dimensional maps also provide us with a convenient tool 
for describing the randomness of nonperiodic orbits on a strange attractor.C6) 
Thus one-dimensional maps are useful for studying turbulence. There are two 
quantities which give fundamental information on chaos. One is the 
Liapunov exponent which measures the degree of the sensitive dependence of 
orbits on their initial conditions. The other is the time-correlation function or 
the power spectrum which exhibits a measure-theoretical structure of 
nonperiodic orbits in phase space. Since turbulence is a chaotic ordered 
motion, the power spectrum is indispensable to studying the structure of tur- 
bulence. 

Many works have been done on one-dimensional maps, but exact 
calculations of time correlations and power spectra are only a few. We shall 
calculate them exactly for a new one-parameter family of maps which 
exhibits a transition from a periodic state to an intermittent choas, and study 
its critical phenomena analytically. 

The one-dimensional map we shall take is 

t x i + ( 1 / m ) ,  {0~<x,< 1 - - ( l /m)}  (1.1) 
x i + l = f " , ~ ( x i ) =  ( ~ { x i + ( 1 / m ) _ l }  ' { 1 - - ( 1 / m ) < ~ x i ~ l }  

where i = 0, 1, 2,..., and m = 2, 3,..., 0 ~ fl ~< m. This has two parameters m 
and ft. Let m be fixed. Then a one-parameter family of maps is obtained. If 
0 ~</3 < 1, then the map has one attractive periodic orbit of period m at 
x i = O, 1/m,..., (m -- 1)/m. If 1 < r m, however, the map is chaotic. In fact, 
as shown in Fig. 1, the map with/~ > 1 generates a nonperiodic orbit which 
is a sequence of periodic motions of period rn interrupted by bursts 

(a) 
> t 

I t 

(c) 
0 40 80 120 IGO 200 240 280 3~0 360 ~00 

Fig. 1. Orbits x i of  the map (1.1) with m = 3  as functions of time i: (a) f l<  1, (b) 
f l=~20 = 1.114465, (c) ~ = ~ 4 =  1.324718. This indicates a transition from the periodic 
motion to an intermittent chaos. 
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irregularly. Therefore, if fl is changed from below to above across fl = 1, then 
the map undergoes a transition from the periodic state to an intermittent 
chaos. Indeed the main features of the nonperiodic motions shown in Fig. 1 
are quite similar to the intermittent turbulence observed by Berg~ et al. in the 
B6nard convection. (7) The onset of choas, however, is caused by the 
excitation of an infinite number of unstable periodic orbits and hence differs 
from the Pomeau-Manneville mechanism, which is a collapse of a pair of 
stable and unstable periodic orbits by a tangent bifurcation, t8'9) Therefore, 
the map (1.1) provides us with a new model for the onset of turbulence and 
associated critical phenomena. This map will be referred to as ~U(m, fl). 

The topological structure of one-dimensional maps is characterized by 
periodic orbits involved. It is well known that, for continuous one- 
dimensional maps, there exists one universal sequence for the coexistence of 
periodic orbits, i.e., Sarkovskii's sequence ~1~ 

3 H 5 ~ 7 ~ 9 ~ . . .  

~ 2 n • 2 1 5 2 1 5  

~ 2 m + l ~ 2 m ~ . . . ~ 2 3 ~ 2 2 ~ 2 ~ l  (1.2) 

where n = 0, 1, 2 .... and i ~- j means that if the map has a periodic orbit of 
period i, then the map also has a periodic orbit of period j. On the other 
hand, for discontinuous maps, such a universal sequence does not exist. Each 
one-parameter family of (1.1), however, seems to have a unique sequence of 
periodic orbits. In fact, we shall find such a sequence for each of 7t(2, fl) and 
~u(3, fl) in Section 2. 

In Section 3, we review a method for calculating the time correlations 
and power spectra. {11-13) In Section4, we carry out the calculation for 
~(2,fl) and ~(3,fl) in the chaotic regime. In Section 5, we study the 
asymptotic properties of the Liapunov exponent and power spectra in the 
vicinity of the onset point fl = 1. Section 6 is devoted to some remarks. 

2. SEQUENCES OF PERIODIC ORBITS FOR ~ ( m , ~ )  

It turns out that the one-parameter families of maps (1.1) have the 
following sequences for the coexistence of periodic orbits. For ~u(2,fl), 
(m = 2), 

1 ~ 4 ~ 6 ~ 3 ~ 8 ~ 1 0 ~ . . -  

~- 2n + 1 ~- 2(2n + 1) + 2 F- 2(2n + 1) + 2 �9 2 F- ... I-2 (2.1) 
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where n -- 0, 1, 2 ..... For  ~u(3, fl) (m = 3), 

1 F- 6 ~ - 4 F -  

2 ~ - 9 ~ 7 ~ 1 2 ~  1 0 ~  1 5 k - . . .  

k- 3n + 2 k- 3(3n + 2) + 3 ~- 2(3n + 2) + 3 ~- 3(3n + 2) + 3 �9 2 

k- 2(3n + 2) + 3 �9 2 ~- 3(3n + 2) + 3 �9 3 ~- ...  ~ 3 (2.2) 

If/~ < 1, then there exists only one periodic orbit of  period m and it is 
stable. If  fl > 1, however, there coexist an infinite number  of  periodic orbits 
and they are all unstable. Near  /~ = m, periodic orbits of  all periods are 
excited. As /~ is reduced from m to 1, however, periodic obits disappear 
successively following the sequence (2.1) or (2.2) from above. All periods 

except  m disappear at /~ = 1. This gives the mechanism of  the growth of 
chaos in terms of  periodic orbits. 

Table h Values of {fin} 

n ft. m.  ~ (m = 2) m.  (m = 3) 

1 1.6180339887 3 5 
2 1.4655712318 5 8 
3 1.3802775690 7 11 
4 1.3247179572 9 14 
5 1.2851990332 11 17 

6 1.2554228710 13 20 
7 1.2320546314 15 23 
8 1.2131497230 17 26 
9 1.1974914335 19 29 

I0 1.1842763223 21 32 

11 1.1729507500 23 35 
12 1.1631197906 25 38 
13 1.1544935507 27 41 
14 1.1468540421 29 44 
15 1.1400339374 31 47 

20 1.1144648799 41 62 

30 1.0854496045 61 92 

39 1.0704058850 79 119 

a mn =_ m n  + (m  - - 1  ). 
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Let us consider the subsequence of periods 

m, - m n  + (m - 1) (n = 1, 2, 3,...) (2.3) 

in each of the sequences (2.1) and (2.2). Periodic orbits of period rn, exist if 
and only if/? >/?, ,  where/?, is the positive root of the algebraic equation 

f t . + l _ / ? . _  1 = 0 (2.4) 

For several n's,/?,  is tabulated in Table I. The {/?,} is a strictly decreasing 
sequence to/?o~ = 1. 

The minimal orbit of period m, is a periodic orbit of type 
(Lm-IR)"L"-2R,  where L and R indicate periodic points on the left and the 
right branch of (1.1), respectively. The/?, is the value of/? at which this orbit 
passes through the vertex x v - 1 - m  -1 - e  (e ~ 0+) so that 

f(mm,~-i)(1) = x  v, fm,~(Xv) = 1 (2.5) 

in the limit e ~ 0 + ,  where f ") denotes the ith iterate o f f .  This orbit also 
passes through the point f~.A)(1/m), where f ( 1 )  denotes the inverse o f f .  
Figures 2a and 2b show such orbit of period 5 of iv(2,/?) and of 7t(3, fl), 
respectively. 

The subsequence (2.3) will be called the main sequence. We shall 
calculate the correlations and spectra at /?=/?,, where (2.4) gives 

1/n = In/?/lln(/? - 1)[ (2.6) 

3. C O R R E L A T I O N S  A N D  SPECTRA 

Let us consider an orbit {xi} generated by a map f(x) ;  

xi = f (x i  _, ) = f(~) (Xo) (3.1) 

wheref")(x) = f ( f " -1) (x) ) .  Let us assume tha t f (x)  is ergodic in the interval 
I = [0, 1], which is satisfied by the map (1.1) in the chaotic regime fl > 1. (14) 

Then, for almost all initial points, the orbit {xi} is nonperiodic and covers I 
densely so that the long-time average of a function g(xi) can be replaced by 
the space average as 

f~ 1 N-I (g(x)) = dx e * ( x )  g(x)= lim ~. g(xi) (3.2) 
N--*~ - N  i=o 

where P*(x) is the invariant density independent of x o. The invariant density 
satisfies 

{nP*}(x) = P*(x) (3.3) 
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Periodic orbit of  period 5 for the map (1.1): (a) rn = 2, # = # 2 - =  1 .465571,  (b) 
m = 3, # =f l~  = (1 + , ~ - ) / 2 .  
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in terms of  the Perron-Frobenius  operator H, 

1 

{Hg}(x) - fo dyf(x - f (y ) )  g(y) = ~ g(y,)/lf'(y~)l 
Yi;f(Yi)=x 

(3.4) 

where the summation is taken over all Yi'S satisfying f (Y i )= x. Equation 
(3.3) indicates that the invariant density P*(x) is the eigenfunction of  H with 
eigenvalue unity. 

Let us now consider the time-correlation function 

Ct(g, h) =- (g(f(~ h(x)) (t = 0, 1, 2,...) (3.5) 

It is convenient to introduce a modified Perron-Frobenius  operator _,Q by tl 1) 

1 
{/4g}(x) =- P*(x-------) {H(P*g)}(x) (3.6) 

Then (3.5) can be written as 

at(g , h) = (g l ttth ) 

where 
1 

(g l h )=- fo dxP*(x) g(x) h(x) 

(3.7) 

(3.8) 

In particular the normalized time-correlation function of nonperiodic orbits 
takes the standard form 

Ct(fx, fix) ( f x  t H t fix) (t = 0, 1, 2,...) (3.9) 
~ ' -  Co(f x, fx )  - (fxl fx) 

where fx  ~- x - (x). 
Let ~tt(x ) be the eigenfunction of / ( r  with an eigenvalue vt; 

/4~'1 = vt ~'l, 1 = 0,  1, 2 .... ( 3 . 1 0 )  

which is related to the eigenfunction of  H by H(P*~/t) = vt(P*~t ). Since f (x )  
is ergodic, v0= 1 is nondegenerate with ~'0 being a nonzero constant. ~11) 
Furthermore,<11) 

[vll~<l, v t e l ,  ( q @ = 0  for 1~>1 (3.11) 

This enables us to expand f x  --- x - (x)  in terms of ~u l as 

fix = ~ btq h (3.12) 
/=1 

822/36/3-4 6 
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Then we have I2It6x = Z ~ ~  blvd,, r Therefore the correlation function (3.9) 
takes the form 

~,= ~ T)tv I (t >/0)  (3.13) 
/=1  

where bt=bl(Xl~Ut)/(3xl~x), Z L l b t = l .  Therefore ~t is obtained 
analytically if one can find the eigenfunction expansion (3.12). Such simple 
examples were given elsewhere. (1 ~) 

In order to define the power spectrum S(co), let us introduce 

N 

~2N(co ) -= ~ (SX t exp(--icot) (3.14) 
t = 0  

Then the Wiener-Khinchin theorem leads to 

1 lim 1 S(co) ~ ((~Xl(~X~ N--*oo (N~+ 1~- (l~2:v(c~ t=-co ~t exp(-icot)  (3.15) 

which has the following properties: 

S(co) = S(-co) ,  S(co) = S(co + 2nn), 
2~r 

{1/(2~z)} f0 S(o)) dco = 1 

(3.16) 

where n is an integer. Using ~-t = ~t and (3.13), we finally obtain 

S(~ = [ ~x bl/ {1-- vl exp(--ico) } + c'c" ] -- (3.17) 

Since v t = I vtl exp(icot), each term of (3.17) gives a Lorentzian spectral line at 
co = co t with a width 7t - - I n  I vl 1. 

There are, however, three anomalous cases in which the line shape 
deviates from the Lorentzian. One is the degenerate case where more than 
two eigenvalues become identical. (11) The second is the critical case where 
the damping constant 7~ (14:0)  become zero. (12'13) The third is the case 
where the shape of the envelope of a large number of Lorentzian lines 
becomes to obey a power law. In fact the last two cases occur in our map 
near the onset point fl = 1, as will be shown later. 
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4. CALCULATION OF THE CORRELATIONS AND 
SPECTRA FOR ~J(m,#) 

A method of calculating the autocorrelations {~,} and the power 
spectrum S(co) will be summarized by taking ~(3, fl), which may be written, 
f o r f l >  1, as 

lx + (1/3), 
f~(x) = f l { x -  (2/3)}, 

(0 ~ x 4 2/3) 
(4.1) 

(2/3 < x ~< 1) 

Let us take fl =f t , .  Then (2.5) leads to 

f~3"+2~(1) = 1 (n = 1, 2, 3,...) (4.2) 

and there exists a periodic orbit of period 3n + 2 which passes through the 
vertex. The coordinates of this cycle are denoted by {Pl, P2,"', P3n+2} with 
Pi < P,'+I. As shown in Fig. 2, the cycle divides the total interval I--- [0, 1] 
into 3n + 2 subintervals {Ii} given by 

1, = [P~-I, Pe], i =  1, 2, 3,..., 3n + 2 (4.3) 

PO ~--0, Pn +1 =f l /3 ,  P2n +2 =P. +, + (1/3) 

p~=fl( f l -  1)/3, p.+z=pt+(1/3) ,  p2.+3=p.+2+(1/3) 

p .=f l " ( f l -1 ) /3=l /3 ,  pz .+l=p.+(1/3)=2/3 ,  P3n+2=p2.+1+(1/3)=1 
(4.4) 

It should be noted that 1/m = Pn =fm,a(Pm,,-1) for any m. 
We define the characteristic functions of the subintervals 

l l  if x C I i, 
Ei (x )=  0 if x ~ I , ,  i ~ { l ' 2 ' " " 3 n + 2 /  (4.5) 

where ~]"~+ZEi(x ) . =  = 1. Substituting (4.1) into (3.4), we obtain 

{HG}(x)=G x -  1 -  ~ Ei(x + G x +  fl ~ E,(x 
i=l --'~ i=l 

(4.6) 

for any function G(x). This leads to a closed flow of the subintervals 

HEI=En+I +En+2, HEi=E.+I+ i (2~<i~<2n + 1); 

HEzn+k=fl-aEk_~ (2~<k~<n+2)  
(4.7a) 
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which can be summarized in the matrix form as 

E 1 

E2 

En 

En+ 1 

En+2 

H " = 
EEn 

E2n 4 1 

E2n+2 

E2n+3 

E3n + 1 

E3n+2. 

1 1 

1 

1 

i-1 
l - 1  

f l - l  l 

f l - i  

1- 
I 
i1 
I 
[ 
I 
I 
I 

1 

1 

E 1 

E2 

En 

En+ 1 

En+2 

E2n 

1 E2,+1 

/2n+2 
E2n + 3 

E3n + 1 

E3n+2. 
(4.7b) 

Any subinterval flows into subintervals, covering each of the subintervals 
uniformly�9 Hence the invariant density P*(x )  must be a step function given 
by a linear combination of the characteristic functions Ei(x)  as 

3n+2 
P * ( x ) =  V a,Ei(x  ) (4.8) 

i=1 

Since H P *  = P * ,  the coefficients {ai} are found to be 

a,+ 1 =A/i, a/n+2 = A f t  

a 1 = A ,  an+ 2 -~A,  azn+3 =A 
a 2 = A f t  -1, an+ 3 -~Af1-1, a2n+4 = A f t  -1 

a 3 = A f t  -2, an+ 4 =Aft -2, a2n+5 = A f t  -2 

a n = A f t  -n+l,  azn+l =A/~ -n+l, a3n+a---Aft -n+l (4.9) 

where A = 3 /{ (8 -  1)[(3n + 2 ) ( 8 -  1) + 3]} from the normalization. This 
leads to the following average value of xi: 

(x) = (1/3) + 16 + (3--fl)(8-- 1)}/6{(3n + 2 ) ( 8 -  1) + 3} (4.10) 
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Hence (x) ~ 1/3 as fl ~ 1, where (2.6) has been used. The invariant density 
P*(x )  is shown in Figs. 3a and 3b for ~(3,/~20 ) and ~(2,/~39 ), respectively. 
The invariant density P*(x )  consists of rn n steps, where rn n is given by (2.3) 
with m = 3, 2. It is remarkable that P*(x )  has m peaks around the periodic 
points x i = 0, 1/m,..., (m -- 1)/m. 

The Liapunov exponent 2 (~1) turns out to be 

2--(lnlf ' (x)[)--= ( n + l ) ( f l - - 1 ) + l  lnfl (4.11) 
(3n + 2 ) ~ - -  1) + 3 

In order to obtain the eigenfunction expansion of fix, it is sufficient to 
take the 2(3n + 2)-dimensional vector space spanned by the bases {E i, xEi;  

i E {1, 2, 3,..., 3n + 2}}. Let us introduce the column vector 

e -- (El ,  E 2 ..... E3, + 2, xE~, x E  2,..., xE3n + 2) 7  ̀ (4.12) 

where the superscript T indicates the transpose. Then the modified 
Perron-Frobenius operator / t  is represented by the (6n + 4) • (6n + 4) 
matrix M defined by He = M r �9 e. The matrix can be calculated from (3.4), 
(4.6), and (4.8) in a straightforward manner and turns out to take the form 

[ MI1 M12] (4.13) 
M =  [M21 M22 

M,~=-M(1 ,  1,/?-~,fl-~"+~)), M12=_M(2/3 , - -1 /3 , - -~ -~ /3 ,2 f l -~"+I) /3 )  

M2~ ~ M(0, 0, 0, 0) = 0, M22=-M(f1-1, 1,fl-~,fl  -(n+2)) (4.14) 

in terms of the (3n + 2) X (3n + 2) matrix 

- l u  1 

M(u, v, x, y)  =- 

x 
u 

[ 

I 
v I 

I 
Vl 

where the unspecified elements are all zero. 

Y 

n 

n + l  

2 n +  1 

2 n + 2  

3 3 n + 2  

(4.15) 
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The eigenvalues v t of  M are determined by d e t ( M -  vI)  = 0, i.e., 

d e t ( M j l - - V I ) = O ~ v 3 " + 2 - - f l - l v 3 " - l - - f l  ( " + 1 ) = 0  (4.16a) 

d e t ( M 2 2 - - v I ) = O ~ v 3 " + z - - f l  2 v a " - ~ - - f l  2("+1)=0 (4.16b) 

where I is the unit matrix. It follows from (2.4) that (4.16a) has one positive 
root V=Vo = - 1, representing the eigenvalue of the invariant density. The 
roots of (4.16a) are denoted by {vi}, ( i =  0, 1 ..... 3n + 1), and the roots of 
(4.16b) by /vj} ( j-= 3n + 2 + i). The eigenvector a 1 of M with an eigenvalue 
v l, (l = i, j ) ,  turns out to be 

a i = for vi, aj  = for vj. (4.17) 
t,. tj 

in terms of the (3n + 2)-dimensional vectors, 

S i =  

1 

v7 3 
p~-6 

l~/- 3 ( n-1  } 

~ 4  

v~ 7 

p~3n+2 

~ i  2 

v y  5 

v~ s 

~Z 3n+l 

gi = 

- 0 1  

0 

0 

0 

0 

0 

0i  
0 

0 

0 1  

0 

0 

0 

- 0 

= 0 ,  

?/ 

n + l  

2 n +  1 

2 n + 2  

3 n + 2  

(4.18a) 
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sj = { 1/(3Ai)} 

X 

/~-- (2n+ 1) 

/~-- (2n+ 1) i;j-- 3 

f l-(2.+,v76 

l - ( 2 n  + l )F}-  3 ( n -  l)  

V 1 [ /> (~ .  + ,  _ ~~ 
v / 4 [ f l - (  ~ + 1 ,  - ~ - 1 A i ]  

v;  ~L8 - ~ +  " - ~ -  ~Aj] 

vT~.+ ~[p-(~.+ , _ ~ - ( . - , A s ]  

Vj[ f l - - (2n+  1) __ 2 f i R  j ]  

vf  2[fl-(2"+ 1) _ 2fl~ 

-- [ / ~ - - ( 2 n + l ,  - -  2fl-lAj] pj  5 

vfS[fl (2"+') - 2fl-2Aj] 

vf3"+l[fl (Z/"+l'--2fl--(n 1)Aj] 

~= 

1 
~ ) _ 1  

~ v , ) - ( . - l /  
J 

nv 2 
2 3 - 1  ~vj ~vj) 
2 3 --2 ~vj q3vj ) 
2 3 --3 ~jq~vj)  

2 3 --n ~vj q~v~ ) 

flvj 
&jCsvJ) -1 

~vjq~vJ)-" 

t/ 

n + l  

2 n +  1 

2 n + 2  

3 n + 2  

(4.18b) 

--1 3n-- _ _ / ~ - - ( n + l )  = __/~--2(1~ __ l)(17)3n 1) {_ 1) .  3 n + 2  __/~  1)j 1 where A j  - -  I)j 

The relevant eigenfunctions of/- t  are given by the inner products of a t 
and e. Therefore we obtain 

~tt=a r .  e ( l = i , j )  (4.19) 

where the superscript 
Appendix A, we have 

T indicates the transpose and Vo = 1. As shown in 

3n+ 1  3n+1  

Z biaS[ + Z bJ ar (4.20) 
i = o  i = o  

where j-= 3n + 2 + i, and b i, bj are defined by 

b o = (x) (4.21a) 

2 r fl [ 1,i + r2,i + r3,~] (i 4= 0) (4.21b) 
b i=  3(1 + v ] " - l ) [ ( 3 n -  1)(1 --fl-lv73 ) + 31 

(o, o,..., o, 1, 1 ......... 1 ) - -  
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rl i=-- s f l - l  - (Ai + fl-2~2 [1 ~.3~]-]~v~)-1 

e/3 2v;2-/3-1v;2(A~ +/3-2~) (1 ?'2,i ~ 

1 
+ /3-1v?2Ai 

1 +v~+v~ 

= e / 3 - 2 V F  1 - - f l - l v F l ( A  i + f l - 2 e 2 )  (1 F3,i 

1 
+ 2fl-lV[-1Ai 

1 +V~+V~ 

1) i 

/3v{ ~ 1) 

F i /3.3-- 1) 

A i = v  i _  3n+2 _/3 2v~n-1 - -  /3-z~,+1, = /3-z(fl _ 1)(v~,-i + 1) 

~2/3--2  

bj - (1 --/3v3){(3n - 1)(1 - - / 3 - 2 V j - 3 )  -{- 3} (4.21C) 

with e =--/3 -- 1. Hence, using (4.20), we obtain the eigenfunction expansion 

3 n + 2  

(~x = V' x E  i _ (x) = (0, 0,..., O, 1, 1 ..... 1). e -- (x) 
i = 1  

3n+ 1 3n+ 1 

= _V' bi~i  + V' bstg s (4.22) 
i = 1  i = 0  

where the (x) term canceled out the i =  0 term due to (4.21a). This gives 
(3.12) with the explicit expressions (4.21) for b I. 

Therefore the correlation function Ct(c~x, ~x) can be written as 
3 n + l  3 n + l  

Ct(?)x, ~x) = (c~x I I?t t 6x)  = ~ Biv  ~ + ~S ~ Bsv ~ (4.23) 
i = 1  i--O 

B t - b , (x  I vJ,) = b , (x  [ a T �9 e) (I = i, j )  (4.24) 

where 
1 

( x l a f .  e ) -  6[(3n + 2)e + 3] ( X +  r +  z )  

X =  e2/3(/3 + 1)(1 + v i 1 _1_ lj~-2) 1 -- (fly73) ("-1) 
3 

Pi  - - / 3  

y =  28V~1( 1 + 2v71 ) 1 - -  Vt 7 - 3 ( n - 1 )  
3 1 F i - -  

Z -=flvi{(/3 + 1)vi + (,8 + 3)} + e[fl 2 + (fiE + 1)V~' + (f12 + 3)V721 

(4.25) 
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( x l a f .  e ) =  (R, +R2)  

_p2 
Ra = 18(1 + v3"-l)[(3n + 2)e + 3] (X1 + Y1 + Zt )  

X l = e 2  [fl + e(fl + l)  1-q3v]-3)~"-l)  
Vj  - -  f l  

Y1 =/~pj-- 1[(~ ~_ 1)V] + eft--l(]3 2 + 1)] 

+ fl-2(1 + v]n-1) v)-l[v3flz(1 + fl) + e(fl2 + 1)1 

+ ~q~  + 1)v74 1 - q~v73) ~"-1~ 
1 - -  f l v f  3 

v3,,_l)v_ 4 1 - v f  3('-1) 
+e2(fl  + 1 ) f l - 2 (  1 +  i J - i-_v i 3 

"-k 2e2fl-lVj 4 1 -- V7 3('-1) 
i - - - P j  3 

-- (fl vj ) 3n_l)V_ 4 1 -1.-3~n-1 
+ 2eft-3(1 + Vj j 1 7-fl-lVT-----7 

Z 1 = e v f2 [~  + 3)v 3 + cfl- ' (f l  2 + 3)] 

+ 2,8-2(1 + v3. "-1) ,  v)-2[v],82(/3 + 3) + e(fl 2 + 3)] 

[pvj ) + e3 ~ + 1)v7 5 1 - " -3,,,-1 
1 - f ly  2 3 

+ 2e2( fl + 1),8_2( 1 + V3.n_l)V75 1 -- Vf 3(n-1) 
, , -f _ v 7 , 

+ 4e2,8_1v75 1 - v73~"-1~ 
1 -- v7 3 

~,'~-- 1 3\n--1  - q J  vj ) 
+82,8-3( 1 +  s y ~ _ f l - l v T a  

v3,,_l)v_ 5 1 

(4.26a) 

(4.26b) 

1 
R2 = 27[(3n + 2)e + 3] {X2 + Yz + Z2} 

X 2  = e2,83 _}_ ~3,8(e2 _}_ 3 f l )  1 - -  (46])./.3) n - I  
3 

1Jj - -  f l  

(4.26c) 
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Y2 =/621)2( B2 "-[- 3/3) + CI~j- 1 [C 4 -]- 3/3(1 -~-/3~)1 

tpvj ) + ~3/3(e2 + 3/3)v/1 1 - in3 ~,n-1 
vj --  fl 

+ 3~/3_1V 1 1 - ~-~iq~-lv~)"-I 

vj --/3 

+ 3e2( 1 +/3)v)_ I 1 - - v f  3(n-1) 
3 1 

Z 2 =f l2v j[ez  + 6(fl + 1)] + ev fE[e  4 + 3(/1 + 1)(2 +/3e)] 

- q~v~ ) 
+ ~/3(c ~ + 3/3)v; ~ 1 3 -3 . - ~  

Vj --/3 

+ 12e/3_%_ ~ 1 - q ~ - % : 3 ) . - ,  
~j 3 __/3--1 

+ 6e2( 1 + / 3 ) v f  2 1 - v f  3 ( ' - ~  
v J - 1  
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Equation (4.23) gives it = Ct( f x ,  f ix)/Co(6X, fix) explicitly in terms of v l and 
/3. The eigenvalues v t are obtained by solving the algebraic equations (4.16) 
numerically fo fl = fin. The normalized correlation function ~t thus obtained 
is shown in Fig. 4 for several cases. The fundamental period observed is 
T m = m  (m = 3). 

The power spectrum S(co) is given by (3.17) with b~=Bz/(Oxl6x), 
which is shown in Fig. 5 for several cases. It is remarkable that, near/3 = 1, 
S(co) consists of many lines with two peaks; the highest peak around 
frequency l-2m= 2zc/m and the second-highest peak around co=0.  The 
number of lines observed in the region 0 ~< co < 2re is m n --  1, and they are 
nearly equally spacing. As / 3 \  1, the number of lines increases as 
m , ~ - m e - l l n e  -1 ( e - f l - 1 ) ,  and both of the two peaks are further 
enhanced. 

The map ~(2,/3) can be treated similarly to the above. The results are 
summarized in Appendix B. The normalized correlation function ~t and the 
power spectrum S(co) can be calculated from (B13) and (B9). Their explicit 
forms at/3 =/339 = 1.070406 are shown in Fig. 6a and 6b. 
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Fig. 4. 
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Time correlation of the map 7J(3,fl): (a)fl=fll, (b)fl=fl4, (c)/~=f130. 

5. CRITICAL PHENOMENA NEAR THE ONSET POINT # =  1 

As fl"~ 1, (2.6) leads to n ~ - - e - l l n ~  -1 for e = / 3 - - 1 ~  1. Then the 
Liapunov exponent (4.11) reduces to 

2 ~-- g/m (m = 2, 3) (5.1) 

The relevant eigenvalues of H satisfy (4.16), which can be generalized 
for arbitrary m as 

pmn__1~--lpm n m__~ ( n + l ) = 0 ,  Pjn--~--2l~jn--m--~ 2 ( n + l ) = 0  ( f l ~ - f l n )  ( 5 . 2 )  
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Power spectum of the map ~g(3,#): (a) # =#1, (b) # =#4, (c) # =#30. 

where j -  m ,  + i. The eigenvalues {vi} and {Vg} for m = 3, m ,  = 92 are shown 
in Fig. 7 by the asterisks and the circles, repectively. All the eigenvalues 
except v 0 = 1 lie inside the unit circle. Two eigenvalues of  the second-largest 
magnitude are observed around arg = +2rc/3, which are denoted by v L and 
v*, respectively. Indeed we have [vL[= 0.998637, arg vL = (2zr/3) + 0.016795. 
Using the argument  principle and Rouche 's  theorem, we obtain, for n > 1, 

#-x <lvil< 1 (i :/= 0) ~ - l < l v j l < f l - 1 / m  (5.3) 

Hence l i m ~ \ ]  Ivit = l i m a \  1 IVgl = 1. 



386 So, Yoshitake, Okamoto, and Mori 

0 

-1 
0 

,m-L = 2 

180 

(a) 

3 6 0  
t 

[ o g S ( o ~ )  m = 2 

-1 

. J3 =1.0704-06 

o . . . . . . . .  0.5 . . . . . . . . .  

(b) 

Fig. 6. (a) Correlation function and (b) power spectrum of the map g'(2, fl) with fl =/?39 = 
1.070406. 
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Eigenvalues of the Perron-Frobenius operator for ~u(3,/330 ). 

We now discuss this approach in more details. Let us define frequency 
co t and damping constant Yt by 

vt = [vii exp(icot) = e x p ( - ?  t + icot) (5.4) 

for l = i, j. As observed in Fig. 7, the eigenvalues are nearly equally spacing 
and co t may be approximated as 

cot~-co~-Z~i/m, ( i = 0 ,  I ..... m , -  1) (5.5) 

near /~= 1, where we have numbered v t in such a way that 0,.<co t < 
~ < 2~r, 0 ~ coj < coj+ 1 < 2rr. As shown in Appendix C, we obtain 

yt~-(1/6n)ln{l+2fle-2(1-cos3coi)} for m = 3  (5.6) 

If  cot is kept a constant, then this reduces to 

Yi ~ (1/3n) In e -1 -~ e/3 (5.7a) 
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If the number i is fixed, then 

t (21r2/3)[~/(1 n ~-1)3] i 2, if i ~ 0 (5.7b) 
Y ' ~  f ( 2 7 r 2 / 3 ) [ e / ( l n e - 1 ) 3 ] [ i - ( n +  1)+(1/3) ]  2 , if i n n +  1 

YL ~ (2z~2e)/( 3 In e-1)3, for i = n + 1 (5.7c) 

with the corresponding frequency co t ~- 21ri/(3n + 2). These indicate that each 
of the spectral lines undergoes the critical slowing down. Equation (5.5) 
indicates that the separation between the spectral lines is given by 

Aco ~- 2z~/rn n ~- 2~/mc -1 In ~-1 (5.8) 

As shown in Figs. 5c and 6b, the power spectrum consists of m n -  1 
spectral lines, which are separated by Aco approximately. Each of these lines 
is produced by each of the eigenvalues {vi}, i :/: 0. The spectral lines of v i and 
vj overlap each other. The contribution of vj, however, becomes zero rapidly 
as c ~ 0 and is already negligible in Figs. 5c and 6b except coj = 0. Then the 
power spectrum (3.17) takes the form 

mn--1 
S(co) = ~ Si(co ) + S~ (5.9) 

i = 1  

where S B is a background spectrum. The height of the spectral line of v i is 
given by 

2Bi 
Si(coi)= ((~x[(~x)~ i (~i<~ 1) (5.10) 

where ( 6 x l f x ) = C o ( f X ,  f X ) = ~ m T - 1 B I .  The highest peak around 
I 2 m :  2~z/m is produced by the eigenvalue v L and its neighbors whose 
damping constants ~ are small. These represent the motion of nonperiodic 
orbits in the neighborhood of the periodic orbit of period m, where the 
invariant density has dominant peaks as observed in Figs. 3a and 3b. The 
second-highest peak around c o = 0  is produced by the eigenvalues 
neighboring on v 0 = 1, whose damping constants Yi are as small as those of 
the neighbors of v L. It seems to be a general feature that the main structure 
of the power spectrum is thus characterized by the periodic orbit whose 
period is least among periodic orbits coexisting. (~s) 

We next consider the envelope of the highest and the second-highest 
peak, which is given by the cos dependence of (5.10). Equation (5.6) reduces 
to 

(3/2n) }(A)i[2/~ 2, if ]coil ~ e 

Yi~-- (3/2n) l~t_(Z~z/3)12/e2, if [coi-(2u/3)[<~t 
(5.11) 
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As shown in Appendix C, B i is asymptot ical ly  given by 

t 1/9nZsZ' 
B~ ~-- f l /92n  2 ]~oi- (2zc/3)l 2, 

if Io)tl "~ 

if leo i --  (21r/3)1 < e 
(5.12) 

Inserting (5.11) and (5.12) into (5.10), we obtain 

~ 11/1 i12' 
(2./3)[', 

if Icoil .r e 
(5.13) 

if I c o i -  (27r/3)1 ~ s 

Since e/zJco ~ In e -  1 ~ CK~ as e ~ 0, there exist a large number  of  spectral 
lines within a width of  order ~. The envelope of  these lines obeys (5.13). 
Therefore it turns out that  the envelope of the highest peak obeys the power 
law 1 / l e o -  f2 m 14 asymptot ical ly,  whereas the envelope of the second-highest 
peak obeys the power law 1/leo] 2. It also turns out that the highest and the 
second-highest peak are enhanced as e - l ( l n e - 1 )  3 and e -1 ln e -1, respec- 
tively. 

We next discuss the asymptot ic  form of  the time-correlation function ~t 
shown in Figs. 4c and 6a for m = 3, n = 30 and m = 2, n = 39, respectively. 
The main features of  the t ime-correlation function consist of  the following 
two components:  a rapid oscillation with period m and a slow modulat ion of 
the amplitude with a long period around 125 and 104 for m = 3 and m = 2, 
respectively. These long periods are significantly different from the periods 
m,  of  the basic cycle (Lm-IR)nLm-2R introduced in Section 4, i.e., m n = 
m n + m - l = 9 2  for m = 3 ,  n = 3 0  and 79 for m = 2 ,  n = 3 9 .  The two 
components  will be shown to arise from the complex-conjugate pair of  the 
second-largest eigenvalues, 

vL = exp{+i(~m + cbL) -- YL} (5.14) 

where ~2,~ = 2zc/m, cb L = 0.016795 and 0.030328, and YL = 0.0013637 and 
0.0030946, for m = 3 and 2, respectively, The contribution of (5.14) to the 
time-correlation function is given by the i = L term of the sum (4.23) and its 
complex conjugate; 

2B L exp(--yzt)  cos[f2m(1 + c])t] (5.15) 

where we have introduced the ratio ~--= (f-)L/..Om as the quantity analogous to 
the misfit of  incommensurate  crystalline structures. (19) I f  one neglects the 
misfit C], then this leads to a simple damped oscillation with period m. The 
small misfit C] produces a slow modulat ion of the amplitude whose period is 
given by Tam p - l/c] = 124.70 for m = 3 and 103.58 for m = 2 in agreement 

822/36/3 4 7 
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with the observed periods 125 and 104, respectively. Its asymptot ic  form is 
given by 

Tam p = s L ~- rn~-~(ln e -~ + 1) (5.16) 

Thus the two fundamental  components  turn out to arise from the eigen- 
values (5.14). 

However,  it can easily be seen that  the function COS{Ore(1 + C~)t} of  
(5.15) oscillates symmetr ical ly  in the positive and the negative direction as 
time t proceeds, and (5.15) never leads to the asymmetr ic  behavior observed 
in Figs. 4c and 6a. This asymmet ry  can be obtained by adding the third- 

Fig. 8. Time-correlation function ~t calculated from (4.23) by taking only first the two 
largest eigenvalues (5.14) and (5.17). (a) m = 3,/3 --/3~0, (b) m = 2,/3=fl39. 
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largest eigenvalue which is given by the nearest neighbor v n of v L for m = 3 
and by the nearest neighbor v 1 of v 0 = 1 for m = 2: 

I) n = exp[i(.O 3 -- 0.035230) - 0.0047066] 

v I = exp[i • 0.065083 -- 0.0091787] (5.17) 

The time-correlation function thus obtained is shown in Figs. 8a and 8b, 
and turns out to reproduce Figs. 4c and 6a quite well. Thus it can be 
concluded that the main features of the time-correlation function are deter- 
mined by the first two largest eigenvalues in (4.23), which correspond to the 
highest and the second-highest spectral line of the power spectrum S(co). 

The periodic state of the map is interrupted when and only when the 
orbit visits the subinterval I3,+2. Therefore the mean lifetime rpe r of the 
periodic state is equal to the mean recurrence time of the subinterval I3n+2. 
As shown in Appendix D, this leads to 

rpe r = 3{ln e-~/ln(1 + e) + e -I} + 2 (5,18) 

at fl =fin. Hence we have rpe r ~-- 3e- l ( ln  e -1 + 1) near fl = 1. 
It should be noted that the Liapunov exponent (5.1) does not scale as 

rv-~r. Phenomenologically the Liapunov exponent of a map can be approx- 
imated as follows. Let an orbit of a map visit the expanding region of the 
map n times in the mean recurrence time r p e  r and the average slope of the 
map in the expanding region be a. Then the Liapunov exponent can be 
approximated as 

n 
2 ----- log a (5.19) 

Z'pe r 

For our map n = ( r p J 3 )  and a = 1 + e so that 2 ~ e/3, whereas for the 
tangent bifurcation n and a do not depend on e so that 2 scale as rp-e~r. 

6. SOME REMARKS 

The time correlations and power spectra of one-parameter families of 
discontinuous maps which bifurcate from a periodic state of period m, 
(m = 2, 3) to an intermittent choas have been calculated for a sequence {fin} 
of values of the bifurcation parameter fl which accumulate to the onset point. 
Since the time correlations and power spectra may be assumed to be smooth 
functions off l  except at critical points, the results obtained are valid for other 
values of fl lying closely to {fin}. On the basis of this, the asymptotic 
behavior of an intermittent turbulence near its onset point has been clarified. 

Thus it has been found that the spectrum consists of a large number of 
Lorentzian lines with two dominant peaks, as shown in Figs. 5c and 6b. The 
highest peak has the envelope 1 / [co -  (2~z/m)[ 4, whereas the second-highest 
peak has the envelope l/]col 2. It should be noted that the exponents of the 
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envelope, 4 and 2, seem to be universal, irrespective of details of the 
model. (16) Since this is one of the most important characteristics of the inter- 
mittent turbulence, it is highly desirable to have experiments on the power 
spectra. 

The onset of chaos of the present model is caused by the excitation of 
an infinite number of unstable periodic orbits accompanied by the instability 
of a periodic orbit of period m. Therefore the topological entropy changes 
from zero to positive at the onset point. This is quite different from the 
Pomeau-Manneville model which represents the transition from a window of 
period m to an observable chaos by a tangent bifurcation so that the 
topological entropy is already positive before the onset. This difference 
brings about differences in critical behavior. For example, in the Pomeau- 
Manneville intermittency, the mean lifetime of the periodic state is given by 
Z'pe r ~ / 3  - ( z - l ) / z ,  where z is the exponent of the map in the vicinity of the 
tangent point. ~9) For piecewise-linear maps, this leads to Zper"~lng -1 in 
contrast to the present model r p ~ r ~ e - ~ ( l n e - l +  1). ~2~ Furthermore, the 
power spectrum seems to have one dominant peaks around e ) =  2n/m with 
the envelope 1/] ~ o -  (2n/m)[ 2 in contrast to the present model. ~16) 

It should also be noted that the tangent bifurcation at the origin could 
exhibit a different behavior since a fixed point at the origin represents a 
steady stateJ 4'~ 

The motivation of studying simple maps like (1.1) is to know what can 
happen in the simplest possible maps. This is because even the simplest maps 
are very rich in variety of phenomena, and simple one-dimensional maps 
appear to describe a complex physical system, as noted in Section 1. The 
physical basis for this is the reduction principle that real macroscopic 
systems actually reduce in dimensionality. 

Therefore, there arise two basic problems. One is to find a general 
sufficiently fine to predict all possible types of the onset of chaos and 
critical phenomena. The second is to find an analytic method for treating 
their correlations and spectra. ~1~'17) If a map f is not piecewise-linear, 
as the quadratic mapf (x )=4ax (1 -x )  and the torus map f ( 0 ) =  
0 + (k/2~) sin(2zc0) + r, then the relevant vector space for the eigenfunction 
expansion of 6x is of infinite dimensions, and a new technique is needed for 
finding the eigenfunction expansion explicitly. 
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APPENDIX A. DERIVATION OF (4.20) AND (4.21) 

Let La l be the left eigenvector of  M with eigenvalue v t and X -  = 
(0, 0,..., 0, i, 1,..., 1) r. Let us expand X in terms of  the eigenvectors at; 

3n+l 3 n + l  

t=0  i=0  

and operate Lat from the left. Then we obtain 

La I. X = b  tLa t .  a t (A2) 

where we have used za  k �9 a t = 0 if k :/: L This leads to 

b t = (Za , .  X ) / ( t a ,  �9 at) (A3) 

The left eigenvectors are given by 

La~ = [ LS' ] (l = i, j) (A4a) 
1 % J  

where 

LS i = 

1 

Nt 
v]Nt 

v~(n- 2)Ni 

vF 2 

V ~ 2N i 

vtNt 
v4Ni 

V]n- 5St 

vi -1 
V F 1Nt 

v~Ni 
v~ Ni 

I~]n-4Ni 

Ltt = (1/3Ai) 

/ ~ -  (2n + 1) 

t~ - 2nv ~- 3n + lFi 

f l -  ( 2n -  1)Vi- 3n + 4Fi 

~-~"+2)vFSF i 

vF2rt 
f l -  (2n + 1)1~/7-3n-1(/, i ~_t~nAt) 

~ -  2.v i- 3. + 2(rt + f l . -  ,A ~) 
f l - (zn-1)V i- 3n + s (1-t_j_fln- 2A i) 

f l -(n+ 2)vZ4(l"i-k-flAi) 

-~2. +,vF3.(ri + 2~~ 

fl-2nv; 3"+ 3(Fi + Zfl"- 'At) 
~-(2n-  J)V~ 3n + 6(Fi + 2fln- ZA i ) 

fl-~"+ l)vF 3(Fi + ZflAt) 

n 

n+l 

2n+l 

2n+2 

3n+2 

(A4b) 
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0 

0 

0 

0 

0 

0 

0 

LSj = 0 

0 

0 

' 0 

0 

0 

0 

= 0 ,  Ltj= 

1 

N: 

(flv})n- 2Nj 

fl-ll~jY2 

( f lv~)- lv jNj  

 jNj 

(flv~)n- Zv/N: 

( f iVe)- lv2Nj  

 Ju: 
3 2 q3vj)vjU  

n 

n + l  

2 n +  1 

2 n + 2  

3 n--2 2 (flvj) v jN j  3n + 2 

(a4c) 
3n+2 -2  3 n - 1  where Ni ~---- fl--(n+ l)v--3n+li , N: =- f l-(2,+ 1)•j--3n+ 1 Fi ~_ Vi __fl vi A i =  

3n+2 - 2 . 3 n - 1  __/~-2(n+l)  v i - - f l  v i . A straightforward calculation of (A.3) with 
(A.4) and (4.17) leads to (4.21). 

APPENDIX B. RESULTS FOR qJ(2,fl) 

Consider the 7/(2, fl) map 

I x +  (1/2) ( 0 4 x 4  1/2) 
f2 '~(x)  = f l lx  -- (1/2)}, (1/2 < x ~< 1) 

(B1) 

At fl = fin there exists a periodic orbit of period 2n + 1 which passes through 
the vertex. This cycle divides the interval I = [0, 1] into 2n + 1 subintervals 
{Ii} given by 

Ii = [Pi -1 ,  Pi], i = 1, 2,..., 2n + 1 

Po = 0 Pn + 1 = fl/2 

Pl =fl(fl - -  1)/2 P n + 2  = Pl + (1/2) 

p,, = f l n ( f l _  1)/2 = 1/2 Pzn+l =P, ,  + (1/2) = 1 (B2) 
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Then, instead of (4�9 we obtain 

fHG}(x)= G(x--1/2) [1-- ~, Ei(x) ] 
i=1 

n+ l  ] 
+fl-~aq~-l(x+p/z)) Z E;(x) 

i=1 

(~3) 

M(u,  v, x, y )  = x 

l) 

l) 

U 

U 

U 

U 

n 

y , n + l  

2 n +  1 

(B8) 

This leads to a closed flow of the subintervals 

HEI=E,~+I + En+2, HEi=En+I+ i (2~<i~<n); 
(B4) 

HE,+k=f l - IEk_1 (1 <~ k <~ n + i) 

It follows from (B4) that the invariant density P*(x) is given by 
2n+ 1 

P*(X)=  Z aiEi(x) 
i--I 

ai _~Afll i (i = 1, 2,..., n), a,+j =Aft  2 J ( j =  1, 2,..., n + 1) (B5) 

where A = 2/{(/] -- 1)[(2n + 1) + 2]}�9 This is shown in Fig. 3b for n = 39. 
The Liapunov exponent turns out to be 

2 =  (n + 1) ( f l -  1 )+  1 
lnfl (B6) 

(2n+  1 ) ( f l - - 1 ) + 2  

The relevant matrix representation M of H becomes 

M= [Mll M12] 
[M21 M22 

M,~ ----M(1, 1,fl-l ,  fl-~"+l)), M~2 = M(1/2 , - -1/2 , - - f l - l /Z,  fl-("+')/2) 

M 2 1 = M ( 0 , 0 , 0 , 0 ) - - 0 ,  Mz2=M(f l  -~, 1,fl-~,fl -(n+2)) (BY) 

in terms of the (2n + 1) • (2n + 1) matrix 
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The eigenvalues v t of M are determined by 

V2"+ 1 - - f l - -  1p~n-- 1 - -  f l -  (n+  1) = 0 ( i = 0 ,  1,..., 2n) 

v ~ " + ' - - f l - 2 v ~ . " - ' - - f 1 - 2 ~ ' + ' )  = 0  ( j = 2 n  + 1 + i )  

The eigenvector a t of M with eigenvalue v t, (l = i, j)  is given by 

1 a t = , for vt (I = i, j) 
tt 

(B9a) 

(B9b) 

(B10a) 

sj = { V(2Aj} 

X 

1 

v7 z 

v74 

i~- 2(n- 1) 

Si = ~i 
~ i  1 

v [  3 

VZ 2"+1 .3 

l - ( 2 n +  1) 

f l - (2n+  1)Vf 2 

f l - (  2"+1)vf4 

fl (2n+ 1)Vj~ 2(n- 1) 

vslB -~2"+1' -BAj} 
p-- 1 {/~--(2n+ 1) - - A j }  J 

v-3lB - ~ 2 " + ' s  -/~-IAs} 
])--5{/6 - (2rt + 1) j --B-2Aj} 

v;~.+,{B ~2.+. B c"-"As}- 

t i ~-. 

0 7  

0 

O I  

0 

0 

0 

0 

0 

O 

~ =  

n 

, n + l  

2 n +  1 

1 

r 
q~y)-~ 

(B10b) 

n 

n + l  

2 n +  1 

(S 10c) 

where Aj =--fl-2(fl--  l](v2n-1, j +1) .  
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The relevant eigenfunctions o f / 4  are given by the inner products of at 
and e; 

~t = ct~ . e (l = i, j )  (B l l  

where e = (El ,  E 2 . . . . .  E2" + ~, xE1, xE  2 ..... xE2~ + ~)v. Then, instead of  (4.21), 
we obtain 

b 0 = (x) = (1/4) + [4 + (2 - f l ) ( f l  - 1)]/4[(2n + 1)(fl - 1) + 2l (B12a) 

hi 2 =f l  {r~, i + r 2 , i } / 2 ( l + v ~ " - ' ) [ ( 2 n - 1 ) ( 1 - f l  ~v/-2)+2] (B12b) 

Car,) ' ]  
Fl,i ~---~ -1C --  (A i  _~--2~2) 1 flV~ -- 1 

( v, ) I 
r z , i = e f l - 2 v ; 1 - - f l - l v ~ l ( A i + f l - z e  2) 1 f l y { - - 1  +fl  lvTIAi 1 +v~-~ 

A i = v ~  --f l  2v2"i l _ f l  2 ( , + l ) = f l - 2 ( f l _ l ) ( v ~ , - l _ l )  

~2/~-  2 

b: (1 -/~v~)[(2n - 1)(1 -/~-~v7 2) + 2] (BlZc) 

Thus it turns out that the time-correlation function takes the form 

2n 2n 
C,(~x ,~x )=  ~ Bird+ ~ Bjv t (B13) 

i=1 i=0 

where j = 2n + 1 + i and B i , B  J are given by 

Bt =- bt(x I a t "  e) (l = i, j )  (B14)  

1 (x 
, r la i .e)=4[(2n+ 1 ) e + 2 ]  {x+ Y+Z} 

1 - (fly? 1) " - '  x =  62~q~ + 1)(1 + v/-') v~_/~ 

Z = f l ~  + 1)v i + e[fl 2 + ~2  + 1)vT, ] 

, Y = 2evf  1 

(B15) 

- 1) 1 - -  P? 2(n 

2 1 
I~ i - -  

(x l a f .  e )=  {R1 +n~} 

R1 = 8(1  -I- v z n - 1 ) [ ( 2 n  + 1)~  + 2]  { y l  -}- Yl}  

(B 16a) 

(B16b) 
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~pvs ) ] 
X l = e  z f l + e ( f l + l )  1 - ' "  - 2 . , - 1  

f f - f l  

r ,  = evsi[(fl  + 1)ff  + ef l- ' ( f l  2 + 1)] 

+ fl-2(1 + v~"- ' )  v f  l[vjZ.fl2(l + fl) + e([3 z + 1)] 

§ 2 4 7  1 )V f  3 1--Q3vf2)" - '  e( f l§  1 )Ayv f  3 
1 - - f lv f  2 1 -- v f  2 

+ 2e2fl_lv]_ 3 1 -- v f  2~n-1) 1 -- ( f l - lvf2)n-1 
2fl- 1A f f  f 3 lv f  2 

1 - v f  2 1 - - i l -  

l 
R z -  12[(2n + 1)e + 2] {X2 + Yz} 

X 2 = e2fl 3 + e3fl(e 2 + 3fl) 1 - (fly/2) " - '  2 
Vj - -  f l  

Y2 =fl2vs(e3 + 3fl) + ~])j7-1 [e ̀  § 3fl(1 +fie)]  

§ /~3fl(e 2 § 3 f l )  Vj_ 1 1 - -  Q3V)-2)n--12 
Vj - -  f l  

+ 3 C - l v f  ~ 

(B 16c) 

1 - -  p j -2 (n - -  1) 

1 -  --1 --2 n--1 (i3 vs ) 1 - v f  2~n-') 
.-2---~-i t- 3e2(1 +fl)v  7 '  
vs _ fl 2 1 P j - -  

APPENDIX C. ASYMPTOTIC FORM OF y iAND B, NEAR fl = 1 

First we discuss the asymptotic form of  y i ~ - l n l v i [ .  Substituting 
v t -= r i exp(ir into (4.16a) and then taking the real part, we obtain 

r~"-l[(r~ cos 3co i __~--1) cos(3n - 1)(2) i -- r~ sin 3co i sin(3n -- 1)~oi] 

= f l - ' q~ -  1) (Cla) 

Taking the imaginary part, we obtain 

r]"-~[r] sin 3(2); cos(3n - 1)o9, + (r] cos 3co~ _ f l - 1 )  sin(3n - 1)~o,1 = 0 

(C lb )  

Taking r~ = 1 in (C la )  and (Clb) ,  we obtain 

( , 8 -  1) 2 (C2) 
r~ ~3~- ~ ~- f12 + 1 - 2fl c os  3(.o~ 
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which leads to 

1 

Yi -~ 2(3n - 1) 
In[1 + 2/](1 -- cos 3coi)/~ -- 1) z] (c3) 

We define &i by 

- ~coi, if co i~O 
c~ ------- 1( c o / -  2~r/3, if coi ~ 2~/3 

If Icbil ,~ e - - f l -  1, then (C3) leads to 

~i~31&il2/2ne, 2 (n~-e l In e - l )  

(C4) 

(c5) 

Next we discuss the asymptotic form of B i. Equation (5.4) leads to 

l l - -  7 i  -}- iCOi, if co/~ 0 

vi-~ [(--1 + iV/5)/2](1 -- yi + i~ D, if coi ~ 2~/3 (C6) 

Then it is straighforward to obtain 

t 1/3ne, 
b i ~ t_i/9ncbi, 

t l/3n , 

if Icoil ,~ e (c7) 
if coi ~ 2zr/3, I&~l< e 

if Icoel < e (C8) 
if coi ~ 2zr/3, ]&i] < e 

where use has been made of y//lc~/l~lo3~l/elne-l< 1. Therefore (4.24) 
leads to 

1/9n2e 
Bi "~ 1/92nZ1•il2 ' 

if [ w i ]  < c 
(C9) 

if coi ~ 27c/3, 1@] < 

which leads to (5.12). 

APPENDIX D. DERIVATION OF (5.18) 

At fl = f t , ,  this discrete dynamical  system is isomorphic to a Markov 
subshift among (3n + 2) states. Then the mean recurrence time of the subin- 
terval I3n+2 equals the inverse of  the probability of  lan+2; (is) 

T p e  r = 1/13n+2P:~(X ~, dx (D1) 
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Using (4.4), (4.9), and (2.4), we obtain 

z 3 . + 2 P * ( x )  d x  = A (/3 - 1)2/3 

Therefore, 

"L'pe r = 3 / A ( ] 3  - 1) 2 = 3n + 2 + [3/(fl - 1)] 

Inserting (2.6) into (D3) leads to (5.18). 

So, Yoshitake, Okamoto, and Mori 

(D2) 

(D3) 
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